Introduction to Thermo-Fluids Systems Design

(0) Erste Bewertung abgeben
CHF 99.00
Download steht sofort bereit
E-Book (pdf)
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.

Beschreibung

A fully comprehensive guide to thermal systems designcovering fluid dynamics, thermodynamics, heat transfer andthermodynamic power cycles Bridging the gap between the fundamental concepts of fluidmechanics, heat transfer and thermodynamics, and the practicaldesign of thermo-fluids components and systems, this textbookfocuses on the design of internal fluid flow systems, coiled heatexchangers and performance analysis of power plant systems. Thetopics are arranged so that each builds upon the previous chapterto convey to the reader that topics are not stand-alone itemsduring the design process, and that they all must come together toproduce a successful design. Because the complete design or modification of modern equipmentand systems requires knowledge of current industry practices, theauthors highlight the use of manufacturer's catalogs toselect equipment, and practical examples are included throughout togive readers an exhaustive illustration of the fundamental aspectsof the design process. Key Features: * Demonstrates how industrial equipment and systems are designed,covering the underlying theory and practical application ofthermo-fluid system design * Practical rules-of-thumb are included in the text as'Practical Notes' to underline their importance incurrent practice and provide additional information * Includes an instructor's manual hosted on thebook's companion website



Autorentext
André G. McDonald, University of Alberta, Canada

Hugh L. Magande
, Rinnai America Corporation, USA

Klappentext

A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles

Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone items during the design process, and that they all must come together to produce a successful design.

Because the complete design or modification of modern equipment and systems requires knowledge of current industry practices, the authors highlight the use of manufacturer's catalogs to select equipment, and practical examples are included throughout to give readers an exhaustive illustration of the fundamental aspects of the design process.

Key Features:

  • Demonstrates how industrial equipment and systems are designed, covering the underlying theory and practical application of thermo-fluid system design
  • Practical rules-of-thumb are included in the text as 'Practical Notes' to underline their importance in current practice and provide additional information
  • Includes an instructor's manual hosted on the book's companion website


Inhalt
Preface xi

List of Figures xv

List of Tables xix

List of Practical Notes xxi

List of Conversion Factors xxiii

1 Design of Thermo-Fluids Systems 1

1.1 Engineering DesignDefinition 1

1.2 Types of Design in Thermo-Fluid Science 1

1.3 Difference between Design and Analysis 2

1.4 Classification of Design 2

1.5 General Steps in Design 2

1.6 Abridged Steps in the Design Process 2

2 Air Distribution Systems 5

2.1 Fluid MechanicsA Brief Review 5

2.2 Air Duct SizingSpecial Design Considerations 12

2.3 Minor Head Loss in a Run of Pipe or Duct 18

2.4 Minor Losses in the Design of Air Duct SystemsEqual Friction Method 20

2.5 FansBrief Overview and Selection Procedures 44

2.6 Design for Advanced TechnologySmall Duct High-Velocity (SDHV) Air Distribution Systems 54

Problems 66

References and Further Reading 72

3 Liquid Piping Systems 73

3.1 Liquid Piping Systems 73

3.2 Minor Losses: Fittings and Valves in Liquid Piping Systems 73

3.3 Sizing Liquid Piping Systems 75

3.4 Fluid Machines (Pumps) and PumpPipe Matching 83

3.5 Design of Piping Systems Complete with In-Line or Base-Mounted Pumps 103

Problems 121

References and Further Reading 126

4 Fundamentals of Heat Exchanger Design 127

4.1 Definition and Requirements 127

4.2 Types of Heat Exchangers 127

4.3 The Overall Heat Transfer Coefficient 130

4.4 The Convection Heat Transfer CoefficientsForced Convection 138

4.5 Heat Exchanger Analysis 142

4.6 Heat Exchanger Design and Performance Analysis: Part 1 147

4.7 Heat Exchanger Design and Performance Analysis: Part 2 157

4.8 Manufacturer's Catalog Sheets for Heat Exchanger Selection 202

Problems 208

References and Further Reading 211

5 Applications of Heat Exchangers in Systems 213

5.1 Operation of a Heat Exchanger in a Plasma Spraying System 213

5.2 Components and General Operation of a Hot Water Heating System 216

5.3 Boilers for Water 217

5.4 Design of Hydronic Heating Systems c/w Baseboards or Finned-Tube Heaters 227

5.5 Design Considerations for Hot Water Heating Systems 236

Problems 258

References and Further Reading 265

6 Performance Analysis of Power Plant Systems 267

6.1 Thermodynamic Cycles for Power GenerationBrief Review 267

6.2 Real Steam Power PlantsGeneral Considerations 271

6.3 Steam-Turbine Internal Efficiency and Expansion Lines 272

6.4 Closed Feedwater Heaters (Surface Heaters) 280

6.5 The Steam Turbine 282

6.6 Turbine-Cycle Heat Balance and Heat and Mass Balance Diagrams 286

6.7 Steam-Turbine Power Plant System Performance Analysis Considerations 288

6.8 Second-Law Analysis of Steam-Turbine Power Plants 300

6.9 Gas-Turbine Power Plant Systems 307

6.10 Combined-Cycle Power Plant Systems 324

Problems 332

References and Further Reading 338

Appendix A: Pipe and Duct Systems 339

Appendix B: Symbols for Drawings 365

Appendix C: Heat Exchanger Design 373

Appendix D: Design Project Possible Solution 383

D.1 Fuel Oil Piping System Design 383

Appendix E: Applicable Standards and Codes 413

Appendix F: Equipment Manufacturers 415

Appendix G: General Design Checklists 417

G.1 Air and Exhaust Duct Systems 417

G.2 Liquid Piping Systems 418

G.3 Heat Exchangers, Boilers, and Water Heaters 419

Index 421

Mehr anzeigen

Produktinformationen

Titel
Introduction to Thermo-Fluids Systems Design
Autor
EAN
9781118403181
ISBN
978-1-118-40318-1
Format
E-Book (pdf)
Hersteller
Wiley
Herausgeber
Wiley
Genre
Maschinenbau, Fertigungstechnik
Veröffentlichung
21.08.2012
Digitaler Kopierschutz
Adobe-DRM
Dateigrösse
49.95 MB
Anzahl Seiten
448
Jahr
2012
Mehr anzeigen
Andere Kunden kauften auch