Eigenvalues and Dichotomy Condition of Difference Operators

(0) Erste Bewertung abgeben
CHF 6.90
Download steht sofort bereit
E-Book (pdf)
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.

Beschreibung

Academic Paper from the year 2018 in the subject Mathematics - Miscellaneous, grade: A, , course: PURE MATHEMATICS, language: English, abstract: Sturm-Lioville equations and their discrete counterparts, Jacobi matrices are analyzed using similar and related methods. However much is needed to be done in terms of spectral theory in the discrete setting.The objective of the study is to compute the deficiency indices, approximate the eigenvalues and establish the dichotomy condition of a Fourth Order Difference equation with Unbounded Coefficients on a Hilbert Space.



Autorentext

Evans Mogoi is currently a Lecturer and head of Mathematics at Eregi Teachers Training College and also a part-time Lecturer of Pure Mathematics at Alupe university, University of Nairobi,Kisii University and Mount Kenya University.Evans holds masters degree (MSC in pure Mathematics) from Maseno University, a bachelors degree (BED Sciences) from Kampala International University, and a Diploma in Education Sciences from Kagumo Teachers Training College. His interests include training Mathematics teachers,Engineers and all other professionals that require Mathematics skills.He has developed (ALP) Active Learning Program used in classroom when teaching Mathematics and won the Lecturer Awards from Eregi Teachers Training College and also from the University of Amsterdam(Netherlands) in 2015 and 2017 respectively.

Mehr anzeigen

Produktinformationen

Titel
Eigenvalues and Dichotomy Condition of Difference Operators
Untertitel
Fourth Order Difference equation with Unbounded Coefficients on a Hilbert Space
Autor
EAN
9783346017451
Format
E-Book (pdf)
Hersteller
GRIN Verlag
Genre
Sonstiges
Veröffentlichung
17.09.2019
Digitaler Kopierschutz
frei
Dateigrösse
0.56 MB
Anzahl Seiten
6
Mehr anzeigen
Andere Kunden kauften auch