Singular Spectrum Analysis for Time Series

(0) Erste Bewertung abgeben
CHF 65.00
Download steht sofort bereit
E-Book (pdf)
Informationen zu E-Books
E-Books eignen sich auch für mobile Geräte (sehen Sie dazu die Anleitungen).
E-Books von Ex Libris sind mit Adobe DRM kopiergeschützt: Erfahren Sie mehr.
Weitere Informationen finden Sie hier.

Beschreibung

Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis.



Inhalt
Introduction: Preliminaries.- SSA Methodology and the Structure of the Book.- SSA Topics Outside the Scope of this Book.- Common Symbols and Acronyms.- Basic SSA: The Main Algorithm.- Potential of Basic SSA.- Models of Time Series and SSA Objectives.- Choice of Parameters in Basic SSA.- Some Variations of Basic SSA.- SSA for Forecasting, interpolation, Filtration and Estimation: SSA Forecasting Algorithms.- LRR and Associated Characteristic Polynomials.- Recurrent Forecasting as Approximate Continuation.- Confidence Bounds for the Forecast.- Summary and Recommendations on Forecasting Parameters.- Case Study: 'Fortified Wine'.- Missing Value Imputation.- Subspace-Based Methods and Estimation of Signal Parameters.- SSA and Filters.

Mehr anzeigen

Produktinformationen

Titel
Singular Spectrum Analysis for Time Series
Autor
EAN
9783642349133
ISBN
978-3-642-34913-3
Format
E-Book (pdf)
Hersteller
Springer Berlin Heidelberg
Herausgeber
Springer
Genre
Grundlagen
Veröffentlichung
19.01.2013
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
2.36 MB
Anzahl Seiten
120
Jahr
2013
Untertitel
Englisch
Mehr anzeigen
Andere Kunden kauften auch