A Mathematical Perspective on Flight Dynamics and Control

(0) Erste Bewertung abgeben
CHF 78.00
Exemplar wird für Sie besorgt.
Kartonierter Einband
Kein Rückgaberecht!


This brief presents several aspects of flight dynamics, which are usually omitted or briefly mentioned in textbooks, in a concise, self-contained, and rigorous manner. The kinematic and dynamic equations of an aircraft are derived starting from the notion of the derivative of a vector and then thoroughly analysed, interpreting their deep meaning from a mathematical standpoint and without relying on physical intuition. Moreover, some classic and advanced control design techniques are presented and illustrated with meaningful examples.

Distinguishing features that characterize this brief include a definition of angular velocity, which leaves no room for ambiguities, an improvement on traditional definitions based on infinitesimal variations. Quaternion algebra, Euler parameters, and their role in capturing the dynamics of an aircraft are discussed in great detail. After having analyzed the longitudinal- and lateral-directional modes of an aircraft, the linear-quadratic regulator, the linear-quadratic Gaussian regulator, a state-feedback H-infinity optimal control scheme, and model reference adaptive control law are applied to aircraft control problems. To complete the brief, an appendix provides a compendium of the mathematical tools needed to comprehend the material presented in this brief and presents several advanced topics, such as the notion of semistability, the SmithMcMillan form of a transfer function, and the differentiation of complex functions: advanced control-theoretic ideas helpful in the analysis presented in the body of the brief.

A Mathematical Perspective on Flight Dynamics and Control will give researchers and graduate students in aerospace control an alternative, mathematically rigorous means of approaching their subject.

Provides a more mathematically rigorous description of flight dynamics than those presented from the usual physical perspective

Self-contained presentation - all you need to understand the methods presented is between these covers

Broadens understanding of aircraft dynamics and control using concepts not normally included in other texts

Includes supplementary material: sn.pub/extras

The author is an assistant professor at the School of Aerospace and Mechanical Engineering of The University of Oklahoma and is presently teaching a graduate course in flight control. Dr. L'Afflitto holds a B.S., M.S., and Ph.D. degree in aerospace engineering and a M.S. degree in Mathematics and his research is currently focused on optimal control theory and differential games theory with applications to aerospace control problems, such as fuel-optimal path planning and formation flying.

Fundamentals of Rigid-Body Dynamics.- Equations of Motion of an Aircraft.- Aircraft Automatic Control.- Conclusion.- Appendix: Fundamentals of Dynamical Systems Theory.

Mehr anzeigen


A Mathematical Perspective on Flight Dynamics and Control
Kartonierter Einband
Springer, Berlin
Anzahl Seiten
H7mm x B237mm x T160mm
1st ed. 2017
Mehr anzeigen
Andere Kunden kauften auch