Deformations of Spacetime Symmetries

(0) Erste Bewertung abgeben
CHF 68.80 Sie sparen CHF 17.20
Print on Demand - Auslieferung erfolgt in der Regel innert 4 bis 6 Wochen.
Kartonierter Einband


This monograph provides an introduction to deformations of Poincaré symmetries focusing on models with a Lie group momentum space and associated non-commutative space-times. The emphasis is put on the emergence of such structures from quantum gravity, their mathematical features described in terms of Hopf algebras and applications to particle kinematics and field theory.

Part I of this work focuses on the link between gravity and deformed symmetries in the case of 2+1 and 3+1 space-time dimensions. Part II is devoted to the description of classical particles with group valued momenta, their phase spaces and kinematics. The last part of these notes provides an introduction to the basic features of classical and quantum field theory on -Minkowski space-time, the prototypical example of non-commutative space-time exhibiting deformed Poincaré symmetry.

The text, being the first providing a detailed overview of these topics, is primarily intended for researchers and graduate students interested in non-commutative field theories and quantum gravity phenomenology.

First monograph at introductory level on Poincaré symmetries

Presents clearly the linking between gravity and deformed symmetries

Illustrates basic aspects of classical and quantum field theories on k-Minkowski non-commutative space


Michele Arzano is a researcher in theoretical physics at the University of Naples "Federico II". He obtained his PhD from the University of North Carolina at Chapel Hill and has held positions at the Perimeter Institute for Theoretical Physics in Canada, at the Institute for Theoretical Physics at Utrecht University in the Netherlands and at "Sapienza" University of Rome in Italy. His research interests over the years have ranged from non-commutative field theory and deformed symmetries to quantum effects in curved spacetimes and black hole thermodynamics. More recently he has contributed to research on asymptotic symmetries in general relativity and conformal quantum mechanics.

Jerzy Kowalski-Glikman is a professor at the Institute of Theoretical Physics of the University of Wroclaw and at National Centre for Nuclear Research in Warsaw. He got his PhD in 1985 from the University of Warsaw and habilitation in 1994 from the University of Wroclaw and full professorship in 2002. His research interests include quantum gravity and quantum gravity phenomenology, non-commutative field theories, cosmology, and string theory. He is author of more than hundred research papers published on international peer reviewed journals.

Invitation: gravity, point particles, and group-valued momenta.- Gravity in 2+1 dimensions as a Chern-Simons theory.- Gravity in 3+1 dimensions, particles and topological limit.- Deformed classical particles: phase space and kinematics.- Hopf algebra relativistic symmetries: the k-Poincarè algebra.- Classical fields, symmetries and conserved charges.- Free quantum fields and discrete symmetries.

Mehr anzeigen


Deformations of Spacetime Symmetries
Gravity, Group-Valued Momenta, and Non-Commutative Fields
Kartonierter Einband
Springer, Berlin
Physik & Astronomie
Anzahl Seiten
H235mm x B235mm x T155mm
1st ed. 2021
Mehr anzeigen
Andere Kunden kauften auch