Machine Learning

(0) Erste Bewertung abgeben
CHF 197.00
Print on demand - Exemplar wird für Sie besorgt.
Fester Einband
Kein Rückgaberecht!

Beschreibung

Machine Learning: Discriminative and Generative covers the main contemporary themes and tools in machine learning ranging from Bayesian probabilistic models to discriminative support-vector machines. However, unlike previous books that only discuss these rather different approaches in isolation, it bridges the two schools of thought together within a common framework, elegantly connecting their various theories and making one common big-picture. Also, this bridge brings forth new hybrid discriminative-generative tools that combine the strengths of both camps. This book serves multiple purposes as well. The framework acts as a scientific breakthrough, fusing the areas of generative and discriminative learning and will be of interest to many researchers. However, as a conceptual breakthrough, this common framework unifies many previously unrelated tools and techniques and makes them understandable to a larger portion of the public. This gives the more practical-minded engineer, student and the industrial public an easy-access and more sensible road map into the world of machine learning.

Machine Learning: Discriminative and Generative is designed for an audience composed of researchers & practitioners in industry and academia. The book is also suitable as a secondary text for graduate-level students in computer science and engineering.



From the reviews:

"This book aims to unite two powerful approaches in machine learning: generative and discriminative. Researchers from the generative or discriminative schools will find this book a nice bridge to the other paradigm." (C. Andy Tsao, Mathematical Reviews, Issue 2005 k)



Klappentext

Machine Learning: Discriminative and Generative covers the main contemporary themes and tools in machine learning ranging from Bayesian probabilistic models to discriminative support-vector machines. However, unlike previous books that only discuss these rather different approaches in isolation, it bridges the two schools of thought together within a common framework, elegantly connecting their various theories and making one common big-picture. Also, this bridge brings forth new hybrid discriminative-generative tools that combine the strengths of both camps. This book serves multiple purposes as well. The framework acts as a scientific breakthrough, fusing the areas of generative and discriminative learning and will be of interest to many researchers. However, as a conceptual breakthrough, this common framework unifies many previously unrelated tools and techniques and makes them understandable to a larger portion of the public. This gives the more practical-minded engineer, student and the industrial public an easy-access and more sensible road map into the world of machine learning. Machine Learning: Discriminative and Generative is designed for an audience composed of researchers & practitioners in industry and academia. The book is also suitable as a secondary text for graduate-level students in computer science and engineering.



Zusammenfassung

Machine Learning: Discriminative and Generative covers the main contemporary themes and tools in machine learning ranging from Bayesian probabilistic models to discriminative support-vector machines. However, unlike previous books that only discuss these rather different approaches in isolation, it bridges the two schools of thought together within a common framework, elegantly connecting their various theories and making one common big-picture. Also, this bridge brings forth new hybrid discriminative-generative tools that combine the strengths of both camps. This book serves multiple purposes as well. The framework acts as a scientific breakthrough, fusing the areas of generative and discriminative learning and will be of interest to many researchers. However, as a conceptual breakthrough, this common framework unifies many previously unrelated tools and techniques and makes them understandable to a larger portion of the public. This gives the more practical-minded engineer, student and the industrial public an easy-access and more sensible road map into the world of machine learning.

Machine Learning: Discriminative and Generative is designed for an audience composed of researchers & practitioners in industry and academia. The book is also suitable as a secondary text for graduate-level students in computer science and engineering.



Inhalt
- List of Figures. List of Tables. - Preface. Acknowledgments. - 1. Introduction. - 2. Generative Versus Discriminative Learning. - 3. Maximum Entropy Discrimination. - 4. Extensions To MED. - 5. Latent Discrimination. - 6. Conclusion. - 7. Appendix. - Index.

Mehr anzeigen

Produktinformationen

Titel
Machine Learning
Untertitel
Discriminative and Generative
Autor
EAN
9781402076473
ISBN
978-1-4020-7647-3
Format
Fester Einband
Herausgeber
Springer Netherlands
Genre
Informatik
Anzahl Seiten
200
Gewicht
505g
Größe
H235mm x B235mm
Jahr
2003
Untertitel
Englisch
Mehr anzeigen
Andere Kunden kauften auch