Machine Learning at the Belle II Experiment

(0) Donner la première évaluation
CHF 130.00
Download est disponible immédiatement
eBook (pdf)
Informations sur les eBooks
Les eBooks conviennent également aux appareils mobiles (voir les instructions).
Les eBooks d'Ex Libris sont protégés contre la copie par ADOBE DRM: apprenez-en plus.
Pour plus d'informations, cliquez ici.

Description

This book explores how machine learning can be used to improve the efficiency of expensive fundamental science experiments.

The first part introduces the Belle and Belle II experiments, providing a detailed description of the Belle to Belle II data conversion tool, currently used by many analysts.

The second part covers machine learning in high-energy physics, discussing the Belle II machine learning infrastructure and selected algorithms in detail. Furthermore, it examines several machine learning techniques that can be used to control and reduce systematic uncertainties.

The third part investigates the important exclusive B tagging technique, unique to physics experiments operating at the resonances, and studies in-depth the novel Full Event Interpretation algorithm, which doubles the maximum tag-side efficiency of its predecessor.

The fourth part presents a complete measurement of the branching fraction of the rare leptonic B decay "B tau nu", which is used to validate the algorithms discussed in previous parts.



Auteur

Thomas Keck is an experimental high-energy physicists. He obtained his PhD at the Karlsruhe Institute of Technology in 2017. As a member of the Belle and Belle II collaboration he was responsible for the development and implementation of machine learning algorithms in the Belle II Software Framework. In particular, his work was focused on hadronic and semileptonic tagging algorithms, and their application to rare B meson decays. His professional interests include any new technologies in the field of computer science in particular deep learning techniques and their application in physics.



Contenu
Introduction.- From Belle to Belle II.- Multivariate Analysis Algorithms.- Full Event Interpretation.- B  tau mu.- Conclusion.

Afficher plus

Détails sur le produit

Titre
Machine Learning at the Belle II Experiment
Sous-titre
The Full Event Interpretation and Its Validation on Belle Data
Auteur
EAN
9783319982496
Format
eBook (pdf)
Producteur
Springer International Publishing
Genre
Physique, astronomie
Parution
29.12.2018
Protection contre la copie numérique
filigrane numérique
Taille de fichier
11.28 MB
Nombre de pages
174
Afficher plus
Les clients ayant acheté cet article ont également acheté :