Visual Data Mining

(0) Donner la première évaluation
CHF 106.90
Download est disponible immédiatement
eBook (pdf)
Informations sur les eBooks
Les eBooks conviennent également aux appareils mobiles (voir les instructions).
Les eBooks d'Ex Libris sont protégés contre la copie par ADOBE DRM: apprenez-en plus.
Pour plus d'informations, cliquez ici.


Visual Data Mining-Opening the Black Box Knowledge discovery holds the promise of insight into large, otherwise opaque datasets. Thenatureofwhatmakesaruleinterestingtoauserhasbeendiscussed 1 widely but most agree that it is a subjective quality based on the practical u- fulness of the information. Being subjective, the user needs to provide feedback to the system and, as is the case for all systems, the sooner the feedback is given the quicker it can in?uence the behavior of the system. There have been some impressive research activities over the past few years but the question to be asked is why is visual data mining only now being - vestigated commercially? Certainly, there have been arguments for visual data 2 mining for a number of years - Ankerst and others argued in 2002 that current (autonomous and opaque) analysis techniques are ine?cient, as they fail to - rectly embed the user in dataset exploration and that a better solution involves the user and algorithm being more tightly coupled. Grinstein stated that the "current state of the art data mining tools are automated, but the perfect data mining tool is interactive and highly participatory," while Han has suggested that the "data selection and viewing of mining results should be fully inter- tive, the mining process should be more interactive than the current state of the 2 art and embedded applications should be fairly automated . " A good survey on 3 techniques until 2003 was published by de Oliveira and Levkowitz .


Visual Data Mining: An Introduction and Overview.- Visual Data Mining: An Introduction and Overview.- 1 - Theory and Methodologies.- The 3DVDM Approach: A Case Study with Clickstream Data.- Form-Semantics-Function - A Framework for Designing Visual Data Representations for Visual Data Mining.- A Methodology for Exploring Association Models.- Visual Exploration of Frequent Itemsets and Association Rules.- Visual Analytics: Scope and Challenges.- 2 - Techniques.- Using Nested Surfaces for Visual Detection of Structures in Databases.- Visual Mining of Association Rules.- Interactive Decision Tree Construction for Interval and Taxonomical Data.- Visual Methods for Examining SVM Classifiers.- Text Visualization for Visual Text Analytics.- Visual Discovery of Network Patterns of Interaction between Attributes.- Mining Patterns for Visual Interpretation in a Multiple-Views Environment.- Using 2D Hierarchical Heavy Hitters to Investigate Binary Relationships.- Complementing Visual Data Mining with the Sound Dimension: Sonification of Time Dependent Data.- Context Visualization for Visual Data Mining.- Assisting Human Cognition in Visual Data Mining.- 3 - Tools and Applications.- Immersive Visual Data Mining: The 3DVDM Approach.- DataJewel: Integrating Visualization with Temporal Data Mining.- A Visual Data Mining Environment.- Integrative Visual Data Mining of Biomedical Data: Investigating Cases in Chronic Fatigue Syndrome and Acute Lymphoblastic Leukaemia.- Towards Effective Visual Data Mining with Cooperative Approaches.

Afficher plus

Détails sur le produit

Visual Data Mining
Theory, Techniques and Tools for Visual Analytics
eBook (pdf)
Springer Berlin Heidelberg
Informatique et Internet
Protection contre la copie numérique
filigrane numérique
Nombre de pages
Afficher plus
Les clients ayant acheté cet article ont également acheté :