Courbes Algébriques Planes

(0) Donner la première évaluation
CHF 33.90
Download est disponible immédiatement
eBook (pdf)
Informations sur les eBooks
Les eBooks conviennent également aux appareils mobiles (voir les instructions).
Les eBooks d'Ex Libris sont protégés contre la copie par ADOBE DRM: apprenez-en plus.
Pour plus d'informations, cliquez ici.

Description

Issu d'un cours de maîtrise de l'Université Paris VII, ce texte est réédité tel qu'il était paru en 1978. A propos du théorème de Bézout sont introduits divers outils nécessaires au développement de la notion de multiplicité d'intersection de deux courbes algébriques dans le plan projectif complexe. Partant des notions élémentaires sur les sous-ensembles algébriques affines et projectifs, on définit les multiplicités d'intersection et interprète leur somme entermes du résultant de deux polynômes. L'étude locale est prétexte à l'introduction des anneaux de série formelles ou convergentes ; elle culmine dans le théorème de Puiseux dont la convergence est ramenée par des éclatements à celle du théorème des fonctions implicites. Diverses figures éclairent le texte: on y "voit" en particulier que l'équation homogène x3+y3+z3 = 0 définit un tore dans le plan projectif complexe.



Auteur

Sous-ensembles algébriques de C.- Ensembles algébriques affines.- Courbes planes affines.- Ensembles algébriques projectifs.- Courbes projectives planes : le théorème de Bezout.- Le résultant.- Point de vue local : anneaux de series formelles.- Anneaux de series convergentes.- Le théorème de Puiseux.- Théorie locale des intersections de courbes.



Contenu
Ensembles algébriques affines.- Courbes planes affines.- Ensembles algébriques projectifs.- Courbes projectives planes : le théorème de Bézout.- Le résultant.- Point de vue local: anneaux de séries formelles.- Anneaux de séries convergentes.- Le théorème de Puiseux.- Théorie locale des intersections de courbes.

Afficher plus

Détails sur le produit

Titre
Courbes Algébriques Planes
Auteur
EAN
9783540337089
ISBN
978-3-540-33708-9
Format
eBook (pdf)
Producteur
Springer Berlin
Editeur
Springer
Genre
Arithmétique, algèbre
Parution
10.12.2007
Protection contre la copie numérique
Adobe DRM
Nombre de pages
160
Année
2007
Edition
1ière ed. 1978. 2ième tirage 2007
Afficher plus
Les clients ayant acheté cet article ont également acheté :